Rolls-Royce 1004227 Automobile User Manual


 
EPRI Proprietary Licensed Material
1-1
1
INTRODUCTION
The power generation market place and the combustion turbine market in particular are evolving
at an ever-increasing pace. Market forces are driving the introduction of new technologies and
advanced combustion turbines designs. The introduction of these technologies inherently
involves risk. The economic pressure of a market moving towards deregulation intensifies this
risk of new technologies. Whereas in the past new products were gradually introduced into the
market, the demands of competing in an open market have driven the pace of incorporating new
technologies to improve profitability on a $/kW basis. The intent of this report is to allow a
qualitative assessment of the risks involved in the use of these new technologies to be made.
In reviewing the available information on the designs of the heavy-duty combustion turbines,
several immediate observations can be drawn on the progression and evolution of the
combustion turbine over the last several decades. The economic pressures in the market place
have driven the pace of incorporation of military and commercial aviation combustion turbine
technology (e.g. single crystal turbine blades) into the power generation market. This increased
rate of design changes has also increased the potential risk of the new product introductions.
This increased risk is incurred for several reasons but is primarily attributed to going from the
‘drawing boards’ into production testing at a customer’s site early in the learning curve before
the design changes have been fully tested and proven over time.
In the past, the rate of incorporation of military and commercial aviation combustion turbine
technology into industrial combustion turbines was slow due to limited production schedules
(compared to military or commercial aviation) and largely limited to the under 50 MW class of
industrial aeroderivative combustion turbines. In recent years, this technology is being
incorporated into the new generation frame machines to create more efficient and powerful
plants at lower costs by:
Taking advantage of the development efforts and costs initially absorbed by the commercial
and military development programs
Availability of computer-aided engineering and design programs (CAE/CAD)
Computer-aided manufacturing programs (CAM), and the current worldwide manufacturing
capability
The advanced frame machines being produced today and the future Advanced Turbine System
(ATS) machines sponsored by the U.S. Department of Energy are blending these technologies
more quickly and producing hybrid combustion turbines with frame technologies, aero designed
flow paths, aero designed cooling technologies, and industrial designed low NO
x
combustion
systems. The advanced industrial machines have even surpassed the military and commercial