Telit Wireless Solutions GM862-GPS GPS Receiver User Manual


 
GM862-GPS Hardware User Guide
1vv0300728 Rev. 0 - 27/04/06
Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 17 of 55
3.2.2 Thermal Design Guidelines
The thermal design for the power supply heat sink should be done with the following specifications:
Average current consumption during transmission @PWR level max (rms): 500mA
Average current consumption during transmission @ PWR level min (rms): 100mA
Average current during Power Saving: 4mA
Average current during idle (Power Saving disabled) 19mA
Average GPS current during Power Saving: 1mA
Average GPS current during Tracking (Power Saving disabled) 60mA
NOTE: The average consumption during transmissions depends on the power level at which the device is requested
to transmit by the network. The average current consumption hence varies significantly.
TIP: The thermal design for the Power supply should be made keeping a average consumption at the max
transmitting level during calls of 350mA rms.
Considering the very low current during idle, especially if Power Saving function is enabled, it is
possible to consider from the thermal point of view that the device absorbs current significantly only
during calls.
If we assume that the device stays into transmission for short periods of time (let's say few minutes)
and then remains for a quite long time in idle (let's say one hour), then the power supply has always
the time to cool down between the calls and the heat sink could be smaller than the calculated one for
350mA maximum RMS current, or even could be the simple chip package (no heat sink).
Moreover in the average network conditions the device is requested to transmit at a lower power level
than the maximum and hence the current consumption will be less than the 350mA, being usually
around 150mA.
For these reasons the thermal design is rarely a concern and the simple ground plane where the
power supply chip is placed can be enough to ensure a good thermal condition and avoid overheating.